Characterization of PXIE MEBT scraper prototype

- Project X & PXIE
- MEBT & scrapers
- Test stand
- Calibration and analysis
- Data processing
- Estimations for PXIE
- Summary

Andrey Denisov

The Novosibirsk State University

Supervisor:

Alexander Shemyakin

Fermilab

Scheme of the Project X

Separation particles between different experiments

- Project X is a new accelerator based on superconducting accelerating cavities.
- CW beam structure
- High beam power: 21 kW in MEBT, 3-8 MW in high-beta sections.
- Superconducting cavities needs protecting from beam power.

PXIE is designed to prove the Project X main concept

Beam preparations are performed in MEBT.

Scrapers are for halo cleaning and beam protection.

Beam input parameters

Ion type	H-
Beam current\energy	10mA\2.1MeV
RMS beam radius	2 mm

Preferences for scrapers:

Number of scrapers	16
Maximum average power per scraper	100 W
Electrically isolated	

Radiation cooled scraper:

To estimate the reached temperature, $W_{absorbed} = \varepsilon \sigma T^4 S$ ε – emissivity, S=45 cm72 – emitting area

 $W \downarrow absorbed = 100 W \not \varepsilon = 0 1 \overrightarrow{\text{In steady state}} : T \downarrow ss = 1200 K$

Might be feasible to use such scraper in PXIE!

- To simulate the scraper thermal regime for PXIE, the scraper emissivity must be measured.
- To test scraper, the e-beam will be used.
- On the test stand, the beam power reflection coefficient is unknown and needs measuring too.
- To do these measurements, the diagnostics must be designed:
 - Analyzing of the beam position and size
 - Necessary to use it in simulations
 - Temperature measurements
 - To use it as a protection system in PXIE
 - To compare with simulated results
- Thermal regime simulation
 - To adjust unknown parameters
 - To estimate the temperatures for arbitrary beam parameters

Goals

- To test the scraper prototype, the test stand represented on the picture will be used.
- An e-beam is accelerated to the scraper \ absorber and can be moved and focused
 - allows to make a beam with different power density.
- The absorber
 - has water cooling and thermocouples for temperature measurements and located 9.4° apart from the vertical position
- Scraper
 - Only way of the scraper cooling is heat radiation. The scraper slope amounts to 32° .
 - Scraper and absorber are made from molybdenum alloy called TZM.
 - TZM has high heat diffusivity and high melt point (about $2500^{\circ} \mathcal{C}$)

The beam falling on the absorber or scraper, the heat and OTR radiation appear. To measure it, the CCD camera is used.

- To measure the beam sizes and position on the scraper, OTR light was used
 - The difficult was the too bright cathode light

- Heat radiation measurements were performed with narrow band red filter
- The transmission wavelength is 710 nm

Accordingly the Wien's distribution law, the emitted intensity depends on surface temperature like

$$I(v,T) = \frac{2hv^3}{c^2}e^{\frac{-hv}{kT}}$$
 or $I(T) = I_0e^{\frac{-T_{eff}}{T}}$

For selected wavelength $T_{eff} = 20350K$

110 can't be easy calculated.

As a solution, some points on plot were taken as initial:

the maximal measured intensity was compared with maximal calculated temperature. Then, the temperature can be restored by the following formula

$$T(I) = \frac{T_i T_{eff}}{T_{eff} + T_1 \ln(I_i / I)}$$

Calibration and analysis

Comparison of the simulated and measured temperature behavior during the cooling

Comparison of simulated and measured curves

- The intensity was measured in the area inside the beam. The temperature had to be constant along that area and equal to the maximal temperature.
- Then, the measured curve was converted into the temperature and compared with curve of maximal simulated temperature.
- The best simulated curve was made with emissivity coefficient ~ 0.2 and the beam power reflection $\sim 20\%$.

Data processing

Comparison of the simulated model and measured temperature distribution

Simulated scraper thermal regime

Snapshot of the scraper

- The intensity distribution was taken from yellow line and converted to the temperature.
- The distribution depends on the power reflection coefficient weakly.
- The best simulated curve was made with emissivity coefficient ~0.15.

Data processing

- To estimate the scraper thermal regime for PXIE, we will assume that the emissivity is equal to 0.15.
- The beam current is 10 mA, beam energy is 2.1 MeV, beam distribution is Gaussian, rms radius is 2 mm.

Distance from scraper edge to the beam center, mm	Absorbed power, W	Maximal temperature, K
6.0	28.3	1100
5.8	39	1230
5.5	62.5	1480

Temperature distribution on the scraper edge

- On the test stand, the 80 mA current, 27 keV energy, 2 mm radius beam was directed on the scraper edge.
- About 80 W of absorbed power
- Near the steady state scraper wasn't damaged

- The simplest diagnostic was developed and used to analyze the scraper thermal regimes.
- The radiation cooled scraper was tested
- The TZM emissivity was determine and was ~ 0.2
- The maximal power, that can be absorbed by the simplest scraper version, is ~50W.

Summary